GADD45a Regulates Olaquindox-Induced DNA Damage and S-Phase Arrest in Human Hepatoma G2 Cells via JNK/p38 Pathways.

نویسندگان

  • Daowen Li
  • Chongshan Dai
  • Xiayun Yang
  • Bin Li
  • Xilong Xiao
  • Shusheng Tang
چکیده

Olaquindox, a quinoxaline 1,4-dioxide derivative, is widely used as a feed additive in many countries. The potential genotoxicity of olaquindox, hence, is of concern. However, the proper mechanism of toxicity was unclear. The aim of the present study was to investigate the effect of growth arrest and DNA damage 45 alpha (GADD45a) on olaquindox-induced DNA damage and cell cycle arrest in HepG2 cells. The results showed that olaquindox could induce reactive oxygen species (ROS)-mediated DNA damage and S-phase arrest, where increases of GADD45a, cyclin A, Cdk 2, p21 and p53 protein expression, decrease of cyclin D1 and the activation of phosphorylation-c-Jun N-terminal kinases (p-JNK), phosphorylation-p38 (p-p38) and phosphorylation-extracellular signal-regulated kinases (p-ERK) were involved. However, GADD45a knockdown cells treated with olaquindox could significantly decrease cell viability, exacerbate DNA damage and increase S-phase arrest, associated with the marked activation of p-JNK, p-p38, but not p-ERK. Furthermore, SP600125 and SB203580 aggravated olaquindox-induced DNA damage and S-phase arrest, suppressed the expression of GADD45a. Taken together, these findings revealed that GADD45a played a protective role in olaquindox treatment and JNK/p38 pathways may partly contribute to GADD45a regulated olaquindox-induced DNA damage and S-phase arrest. Our findings increase the understanding on the molecular mechanisms of olaquindox.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment

Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...

متن کامل

The Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment

Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...

متن کامل

Protective effects of thioredoxin-mediated p53 activation in response to mild hyperthermia.

Recently, mild hyperthermia was shown to induce cell cycle arrest at the G2/M phase transition without leading to DNA damage. The mechanism of this regulation has not yet been elucidated, although p53 has been shown to be activated in response to mild hyperthermia. Here, we report the role of thioredoxin (TXN) in mild hyperthermia-induced cellular responses. Our data showed that the protein lev...

متن کامل

UV-induced G2 checkpoint depends on p38 MAPK and minimal activation of ATR-Chk1 pathway.

In response to UV light, single-stranded DNA intermediates coated with replication protein A (RPA) are generated, which trigger the ATR-Chk1 checkpoint pathway. Recruitment and/or activation of several checkpoint proteins at the damaged sites is important for the subsequent cell cycle arrest. Surprisingly, upon UV irradiation, Rad9 and RPA only minimally accumulate at DNA lesions in G2 phase, s...

متن کامل

GADD45α regulates cell proliferation and DNA repair of BRL-3A cells that treated by FZD/UVC via P38, JNK, CDC2/CCNB1, AKT and MTOR pathways

GADD45α is a stress-induced gene activated by a variety of stress stimuli, including ultraviolet and ionizing radiation, and involved in cell cycle regulation, apoptosis, maintenance, genomic stability, DNA repair and immune response. However, the effects and regulatory mechanism of GADD45α on proliferation, apoptosis and DNA damage repair of hepatocytes in liver regeneration remains unclear. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2017